MA 2071 Matrices \& Linear Algebra I

Discussion 1

Worcester Polytechnic Institute

Week of January 15, 2024¹

Augmented Matrix

Suppose we have the following system of linear equations:

$$
\left\{\begin{array}{l}
x+2 z=5 \\
y-30 z=-16 \\
x-2 y+4 z=8
\end{array}\right.
$$

The equivalent augmented matrix is:

$$
\left[\begin{array}{ccc|c}
1 & 0 & 2 & 5 \\
0 & 1 & -30 & -16 \\
1 & -2 & 4 & 8
\end{array}\right]
$$

Note: The submatrix to the left of the vertical line is the coefficient matrix.

Row Reduction

Properties of reduced echelon form (REF)

1. All nonzero rows are above any rows of all zeroes.
2. Each leading entry of a row is in a column to the right of the leading entry of the row above it.
3. All entries in a column below a leading entry are zero.

Properties of row reduced echelon form (RREF)
4. The leading entry in each row is 1 .
5. Each leading 1 is the only nonzero entry in its column.

The green numbers are the leading entries.
Definition: A pivot position is a location corresponding to a leading entry in the reduced form of the matrix.

Definition: A pivot is a nonzero number in a pivot position.

Pivots

Let's say you have a 3×4 coefficient matrix (three equations, four variables):

You can have at most three pivots:

Now, let's say you have a 5×4 coefficient matrix (five equations, four variables):

You can have at most four pivots:

Main Idea: If you have m equations and n variables, you will have a $m \times n$ coefficient matrix. The maximum number of pivots is $\min \{m, n\}$ (the smaller of m and n).

Other insights from pivots:

- In a consistent system with a unique solution, the last row of the row reduced echelon form of the augmented matrix will look like

$$
\left[\begin{array}{llll|l}
0 & \ldots & 0 & 1 & b
\end{array}\right],
$$

where $b \in \mathbb{R}$.

- In an inconsistent system, the last row of the row reduced echelon form of the augmented matrix will look like

$$
\left[\begin{array}{llll|l}
0 & \ldots & 0 & 0 & b
\end{array}\right],
$$

where $b \neq 0$.

Example: Row Reduction

Suppose we have the following system of linear equations:

$$
\left\{\begin{array}{l}
x-y+z-w=2 \\
y+2 z+w=1 \\
-z+w=4 \\
-x+2 y+z+5 w=5
\end{array}\right.
$$

The equivalent augmented matrix is:

$$
\left[\begin{array}{cccc|c}
1 & -1 & 1 & -1 & 2 \\
0 & 1 & 2 & 1 & 1 \\
0 & 0 & -1 & 1 & 4 \\
-1 & 2 & 1 & 5 & 5
\end{array}\right]
$$

$$
\left[\begin{array}{cccc|c}
1 & -1 & 1 & -1 & 2 \\
0 & 1 & 2 & 1 & 1 \\
0 & 0 & -1 & 1 & 4 \\
-1 & 2 & 1 & 5 & 5
\end{array}\right] \sim R_{1}+R_{4}\left[\begin{array}{cccc|c}
1 & -1 & 1 & -1 & 2 \\
0 & 1 & 2 & 1 & 1 \\
0 & 0 & -1 & 1 & 4 \\
0 & 1 & 2 & 4 & 7
\end{array}\right]
$$

$$
\sim-R_{2}+R_{4}\left[\begin{array}{cccc|c}
1 & -1 & 1 & -1 & 2 \\
0 & 1 & 2 & 1 & 1 \\
0 & 0 & -1 & 1 & 4 \\
0 & 0 & 0 & 3 & 6
\end{array}\right]
$$

We are now in reduced echelon form.
Notice: We have four variables and four pivots, so we know there is a unique solution!

For row reduced echelon form, we need each leading entry to be 1 :

$$
\left[\begin{array}{cccc|c}
1 & -1 & 1 & -1 & 2 \\
0 & 1 & 2 & 1 & 1 \\
0 & 0 & -1 & 1 & 4 \\
0 & 0 & 0 & 3 & 6
\end{array}\right] \underset{\frac{1}{3} R_{4}}{\sim} \underset{\substack{1 \\
\hline}}{\sim}\left[\begin{array}{cccc|c}
1 & -1 & 1 & -1 & 2 \\
0 & 1 & 2 & 1 & 1 \\
0 & 0 & 1 & -1 & -4 \\
0 & 0 & 0 & 1 & 2
\end{array}\right]
$$

Now, use multiples of the leading entries to eliminate the other nonzero numbers in the coefficient matrix, starting from the right.

$$
\begin{aligned}
& {\left[\begin{array}{cccc|c}
1 & -1 & 1 & -1 & 2 \\
0 & 1 & 2 & 1 & 1 \\
0 & 0 & 1 & -1 & -4 \\
0 & 0 & 0 & 1 & 2
\end{array}\right]}
\end{aligned} \begin{gathered}
R_{4}+R_{1} \\
-R_{4}+R_{2} \\
R_{4}+R_{3}
\end{gathered}\left[\begin{array}{cccc|c}
1 & -1 & 1 & 0 & 4 \\
0 & 1 & 2 & 0 & -1 \\
0 & 0 & 1 & 0 & -2 \\
0 & 0 & 0 & 1 & 2
\end{array}\right]
$$

Thus, the solution is $(x, y, z, w)=(9,3,-2,2)$.

